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Abstract. FC Portugal 3D team is developed upon the strucfioeir previous Simulation
league 2D/3D teams and our standard platform leagam. Our research concerning the
robot low-level skills is focused on developing heiors that may be applied on real robots
with minimal adaptation using model-based approacleir research on high-level soccer
coordination methodologies and team playing is fgafocused on the adaptation of
previously developed methodologies from our 2D socieams to the 3D humanoid
environment and on creating new coordination metlagles based on the previously
developed ones. The research-oriented developnfienirdeam has been pushing it to be
one of the most competitive over the years (Wohdnepion in 2000 and Coach Champion
in 2002, European champion in 2000 and 2001, Ccdauh place in 2003 and 2004,
European champion in Rescue Simulation and Simul&® in 2006, World Champion in
Simulation 3D in Bremen 2006 and European champiog007, 2012, 2013, 2014 and
2015) among a large number of other awards. Thpgempacludes general information
related to the design of our agent architecturedestribes some of the main contributions
of our 3D simulation league team during the lagtrgeNew low-level behaviors have been
developed for the simulated humanoid agent, whicls Wwased on the controlling of the
dynamics of the behaviors, by using the principlepbysical modeling. A new generic
learning framework has also been developed, whictused on top of the low-level
behaviors to tune the behavior parameters. Thewruresearch is focused on improving the
current learning framework by developing new leagnalgorithms to optimize low-level
skills performance, developing a new omnidirectidiiek engine and integrating high-level
coordination mechanisms. Very good results wereadly achieved, in previous years
concerning the improvement of low-level skills, these of high level coordination
methodologies and the use of machine learning retbgies.

1. Introduction

FC Portugal was built upon the low-level skillseasch conducted during previous
years. Although there is still space for improvemaenFC Portugal low-level skills,
we feel that we currently have a very performingafethese skills. Our research on



developing low-level behaviors is mainly focusedapproaches which can also be
applied on the real robot with minimal adaptatibnthis matter we developed low-
level skills using model-based approaches, in which stability of humanoid
behavior is modeled using physical systems. Corttiel stability dynamics of a
humanoid robot is still challenging and it is orig¢hee main research directions of our
team. In section 4, we explain our approach to ldgveobust and agile soccer low-
level skills.

As another main research direction, we are alsasied on the high-level decision
and cooperation mechanisms of our agents. For Rgibd®D soccer simulation
competition that was based on spheres (from 20@2006), the decisive factor (like
in the 2D competition) was the high-level reasorgagacities of the players and not
their low-level skills. Thus we worked mainly on ghilevel coordination
methodologies for our previous teams. Since 200mamoid agents have been
introduced in the 3D Simulation league, but the henof agents has been kept small
until 2011. During this period research in coortimmawas not very important in the
3D league. Developing efficient low-level skillsprararily to what should be the
research focus of the simulation league, has bezmgin decisive factor in the 3D
league, during this period. However, in 2011 thenber of agents has increased to 9,
and in 2012 teams were composed by 11 players mdikially coordination, a very
important issue for the efficiency of the team.

Our research on high-level soccer coordination ouilogies and team playing is
mainly focused on the adaptation of previously ttgyed methodologies from our

2D soccer teams [1, 2, 3, 4, 5] to the 3D humaearronment and on creating new
coordination methodologies based on the previoasyeloped ones. In our 2D
teams, which participated in RoboCup since 200h wiéry good results, we have
introduced several concepts and algorithms coveaaibgoad spectrum of the soccer
simulation research challenges. From coordinatiechrtigues such as Tactics,
Formations, Dynamic Positioning and Role Exchangiyation Based Strategic
Positioning and Intelligent Perception to Optimiaatbased low-level skills, Visual

Debugging and Coaching, the number of researchcespeC Portugal has been
working on is quite extensive [1, 2, 3, 4, 5].

Several interesting topics were opened by the dinicbon of humanoid agents,
including in the use of learning and optimizati@chniques for developing efficient
both high-level and low-level skills. In previoussk, we have introduced methods
for developing very efficient low-level skills ugjnoptimization techniques [1, 6].
Recently, we have developed a new learning framewior which several

optimization techniques have been included suchilbslimbing (HC), tabu search

(TS), genetic algorithms (GA), particle swarm opgation (PSO), Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) anther policy learning methods.
This work has already conducted to the developrokan efficient set of humanoid
low-level skills. Section 6 presents briefly oumnkearning framework. We have also



developed new walking models for humanoid robo& #mphasize speed, stability
and flexibility [30].

2. Research Directions

New research directions include research on dewejomur current layered
architectures for agent controlling to be optimizaad more efficient. Thus our
research will be focused on improving both lowgels and higher layers. The lower
layers will be responsible for the basic controltié humanoid such as stability,
while the higher layers take decisions at a strategel.

In our lower level control architecture, we willadop new kick skill based on our
previous kick skill; also we will improve our dewegled running skill to be used as a
primary locomotion for our robots. The robustnekthe walking and running skill in
face of the external forces will also be improved.

In the upper level control architecture, directiamigesearch in FC Portugal include
developing a model for a strategy for a humanoith@aand the integration of
humanoids coming from different teams in an iné&m framework to allow the

formation of a team with different humanoids, aneveloping a new opponent
modeling approach to model the opponent basic bhetsavperformance, its

positioning, etc. These are factors that must kentanto account when selecting a
given strategy for a game.

One of our improvements that have been achievethglihe previous years was
implementing a new learning framework. This newrnésy framework guides us to
optimize our robot behavior more efficiently. Sealepptimization and learning

methods for generation of humanoid behaviors arigbeompared, including

simulated annealing (SA), Hill Climbing (HC), GASP, CMA-ES, PoWER, and

CREPS-CMA. These techniques have been combinedphitkics based models and
optimum control to derive very efficient skills.

Also heterogeneity will be important because in filteire it is expected that not all
humanoids will be identical, having humanoids wdifferent capabilities introduces
new problems of task assignment that will havedalbalt with in humanoid teams.
We have already tested the use of heterogeneouanuias in 2014 3D Simulation
competition. We optimize behavior specifications éach heterogeneous humanoid
robot.

3. Agent Architecture

The FC Portugal Agent 3D [7] is divided in sevepackages: each one with a
specific purpose. Figure 1 shows the general streaf the humanoid agent.
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Fig. 1: FCP Humanoid Agent Architecture
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® World State: Contains classes to keep track of the environnm@otrmation.
These include the objects presented in the fiégkddfobjects as is the case of flags
and goals and mobile objects as is the case gilélyers and the ball), the game state,
(e.g. time, play mode) and game conditions (eedd fiength, goals length);

® Agent Model: Contains a set of classes responsible for thentagedel
information. This includes the body structure (bathjects such as joints, body parts
and perceptors), the kinematics interface, thet jlwiw-level control and trajectory
planning modules;

® Geometry. Contains useful classes to define geometry estdis is the case of
points, lines, vectors, circles, rectangles, pahgand other mathematical functions;

® Optimization: Contains a set of classes used for the optinsizgirocess. These
classes are a set of evaluators that know how leeltdvior should be optimized;

® Skills: This package is associated with the reactivdssaitd talent skills of the
agent. Reactive skills include the base behavisris dhe case of walk in different
directions, turn, get up, kick the ball and catble ball. Talent skills are some
powerful think capabilities of the agent, which lume movement prediction of
mobile objects in the field and obstacle avoider;

® Utils: This package is related with useful classes défiatv the agent to work.
This includes classes for allowing the communicatietween the agent and the
server, communication between agents, parsersemdyders.

® Strategy. Contains all the high-level functions of the agdrhe package is very
similar to the team strategy packages used for &bboCup leagues.

4. Low-Level Skills

In this section we briefly describe our approadeedevelop soccer low-level skills,
such as walking, running, and kicking. Nowadays,onder to compete well in
RoboCup soccer humanoid leagues, the robots shsulable to perform their low
level skill fast, in an omni-directional manner,daalso robust against the external



perturbation and noises. In order to improve owv-level skills, we model the
dynamics of them by using simple physical systermenrl we try to apply the
optimization techniques, in order to tune paransetéthose models of that skill.

4.1 Modelling and Controlling the Dynamics of the Low-Level Skills

Many popular approaches used for controlling tharxze of bipedal locomotion are
based on the Zero Momentum Point (ZMP) stabiliicator and inverted pendulum
model. ZMP cannot generate reference walking trajexs directly but it can indicate
whether generated walking trajectories will keep alance of a robot or not. Kajita
et al. assumed that biped walking is a problematéricing a cart-table model [8],
since in the single supported phase, human walkamgbe represented as the Cart-
table model.

Biped walking can be modeled through the movemg&@tMP and CoM. The robot is
in balance when the position of the ZMP is inside support polygon. When the
ZMP reaches the edge of this polygon, the robadots balance. Cart-table model
has some assumptions and simplifications in itsehddne the major drawback of
the cart-table model is its consideration the heighthe robot fixed during it
movement, which is not true for many soccer loweleskills such as running or
kicking, Therefore we used the inverted pendulund@havhich does not have this
issue. Figure 2 shows how robot dynamics is modejedn inverted pendulum and
its schematic view.

MY

Fig. 2. Schematic view of inverted pendulum model on dection and frontal view of the NAO robot

Two sets of inverted pendulum are used to model 3D walking. One is for movements
in frontal plane; another is for movements in coronal plane. The position of Center of
Mass (CoM) M is x and z defined in the coordinate system O. Gravity g and cart
acceleration create a moment 7, around the center of pressure (CoP) point P.. The
Equation (1) provides the moment or torque around P.

T,=M(g+7Z)(x — P)— Mxz (1
We know from [9] that when the robot is dynamically balanced, ZMP and CoP are

identical, therefore the amount of moment in the CoP point must be zero, 7,=0. By
assuming the left hand side of equation (1) to be zero, equation (2) provides the



position of the ZMP. Another cart-table must be used in y direction. Using the same
assumption and reasoning equation (3) can be obtained. Here, y denotes the movement
iny.

P =x— =X )
gtz
z_ . 3)
h=y- g+2y

In order to apply inverted model in a biped walking problem, first the position of the
support foot during the performing the low-level skill must be planned and defined,
then based on the constraint of ZMP position and support polygon, the ZMP trajectory
can be designed. In the next step, the position of the CoM must be calculated using
differential equations (2) (3). One of the main issue of using the inverted pendulum, is
how to solve these differential equations or how to generated trajectory. We presented
an approach for the solution of the cart- table model analytically in [13]. However the
solution of the inverted pendulum model cannot be derived analytically, instead
recently we have presented a numerical approach to solve inverted pendulum model
and to calculate the CoM trajectory. This approach is explained in detains in [14].
Finally, inverse kinematics is used to find the angular trajectories of each joint based
on the planned position of the foot and calculated CoM trajectory. We used our two
different inverse kinematic approaches, which were applied on the NAO humanoid
soccer robot can be found in [10] [11].

4.2 Omni-Directional Biped Locomotion

This section briefly presented the design of thetootion controllers to enable the
robot with an omni-directional walking. We use tladssign to implement walking
approached by using both inverted pendulum and-tedoie model. The extended
details of our approach can be found in [13].

Developing an omni-directional biped locomotioraisomplex task made of several
components. In order to get a functional omnidiceal walk, it is necessary to
decompose it in several modules and address eachulenandependently. Each
modules is explains in the following.

® ZMP Trajectory Generator - In this module the ZMP generated using the
desired velocities. This computation takes into account only the linear component of
the walk, which means to walk in any direction always looking to the same direction,
like diagonal walk.

® Foot Planner - One of the drawbacks of the linear inverted pendulum model is
the need for a constant height. We can improve this by adjusting the CoM height using
the length of the leg, support foot position and the ground projection of the CoM. In
[12] a detailed explanation is given.



® CoM Trajectory generator — This module is responsible to Generate the CoM
by using the dynamics equations of inverted pendulum model [14], or cart-table model
[12] [13].

® Swing Trajectory Generator - This module is responsible to generate a
trajectory for the swing foot. It uses the cycloid parametric equation to generate the
desired trajectory.

® Feet Frame Computation - After computing the support foot (ZMP) position,
CoM position and swing trajectory feet position has to be computed taking into
account if it is in double support phase or single (left or right) support phase. This
module is responsible for computing the position and orientation of both feet relative
to the CoM frame.

® Active Balance - This module is where the balance of the humanoid during
locomotion is controlled in order to maintain it stable. The inverted pendulum model
has some simplifications in biped walking dynamics modeling; in addition, there is
inherent noise in leg's actuators. Therefore, keeping walk balance generated by
inverted pendulum model cannot be guaranteed. In order to reduce the risk of falling
during walking, an active balance technique is applied. The detailed explanation of this
module can be found in [12].

The Active balance module tries to keep an uprigltk position by decreasing
variation of trunk angles. One PD controller isigesd to control the trunk angle to
be the desired trunk pitch angle. An inertial measwent unit which is included in
the robot body gives the trunk inclination anglehéi the trunk angle is not the
desired pitch angle, instead of considering a doatd frame attached to the trunk of
the biped robot, position and orientation of thetfare calculated with respect to a
coordinate frame, which is attached to the CoM tpwsiand theZ axes always has
the predefined pitch angle to the ground plane.example if the trunk pitch offset is
assumed to be zero, tHexes keeps always perpendicular to the ground plane

The PD controller calculates the rotation angleedasn the difference between the
current trunk inclination and the desired trunkclpitangle. The calculated rotation
angle is a portion of this difference and the cowtk frame rotates with the
calculated rotation angle. By using this transfdiormg the controller tries to keep the
Z axis of the coordinate frame in a desired angléht ground plane. The foot
position is calculated by using the rotated coatéid frame, the feet orientation also
tries to be kept parallel to the ground.

The Transformation formulation is presented in ¢igna(4).
Foot = TEM (pitchAng, rollAng) X Foot @)
The pitchAng and rollAng are assumed to be the angles calculated by the PID

controller aroundy andx axis respectively. Figure 3 shows the architectfr¢he
active balance unit when the trunk pitch offsedssumed to be zero.
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Fig. 3: Active Balance controller

We have also begun work in a walking engine for &mond robots which uses a
hybrid ZMP-GPC framework to allow for fast omniditnal walk, while still being
robust to perturbations [30]. Despite promisingidhiresults, the speed of this new
walking engine is still beneath our previous work.

4.3 Omni-Directional Running

Many researchers, up to now, have modeled the bigking by considering the

height of Center of Mass (CoM) as a fixed constaitiier biomechanical studies
show that the CoM height is variant during walkemgd running [17]. The shape of
CoM height trajectory is important for energy com@tion, and it varies differently

for various speeds and step length ranges. Recaveljhhave showed this fact in our
work [16]. Although cart-table model is widely usadobotics, but robots often need
to keep their knees bent in order to keep the heftoM fixed, as the constraint of
this model. Therefore, the change of the CoM heighinportant both for walking

and running. Figure 4 and figure 5 shows a plaiew wf the human walking and a
walking generated by a cart-table model, respdgtive

V20 2 2

Fig 4. A planar view of a human walking

Fig 5. A planar view of a robot’s walking while using tbart-table model

e —
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The study of designing vertical CoM trajectory igle up to know, and to the best
of our knowledge, there is no study focused ordfsgning of the optimal hip height
trajectory generator, particularly with respectgenerate fast and stable walking.



Recently, we have tried to model the hip heighjetiry or CoM vertical trajectory,
which the detailed explanation of our approachlmafound in [14] and [16].

We consider the height trajectory as a periodic enment. The CoM vertical
trajectory generator is designed using the paRalrier series. The generated CoM
vertical trajectory by Fourier series is the inputa programmable CPGs approach
based on Hopf oscillators which is able to learaillagor frequency, amplitude and
phase from the periodic input signals. We desigaed implemented a CPGs
network, based on the programmable CPGs approacohrder to generate the hip
height trajectories. The structure of our desig8€@s is shown in figure 6.

Oscillator

~

Qleamed(t)

Fig 6. Schematic view of network of adaptive Hopf oscilat as a programmable CPGs
network, where Pteach(t) is a the generated ti@jgbtty Fourier Series

Optimization algorithms applied in order to findetbest parameters of optimal hip
height trajectory generator with respect to fast atable walking or to generate an
energy efficient walking. We have investigated amskd the gait optimization
approaches in our previous walk engine [6][18][1®0r optimization results shows
the robot using variable height and inverted pamtutan walk faster [14][15] and
more energy efficient [16][20] than a robot walkthwvivaried height. As an example,
the system overview of the proposed methodolodyt4i is provided in fig 7, which
illustrates the role of each component.
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Fig 7. The interaction between each component of the [m@gapproach



4.4 Humanoid Kick with Controlled Distance

We investigated the learning of a flexible humanmdot kick controller, i.e., the
controller should be applicable for multiple congesuch as different kick distances,
initial robot position with respect to the ball both. Current approaches typically
tune or optimise the parameters of the biped kaitroller for a single context, such
as a kick with longest distance or a kick with adfic distance. Hence our research
guestion is “how can we obtain a flexible kick aotier that controls the robot (near)
optimally for a continuous range of kick distance3he goal is to find a parametric
function that given a desired kick distance, owpilite (near) optimal controller
parameters. We achieve the desired flexibility bé& tcontroller by applying a
contextual policy search method. With such a cdantpolicy search algorithm, we
can generalize the robot kick controller for diffet distances, where the desired
distance is described by a real-valued vector.

Figure 8 shows an example of an initial and fintahee for the kick behavior. Our
movement pipeline is composed of two main partdck controller, which receives
parameter® and converts them into joint commands for the tebservos; and a
policy function, which maps a given context s fosgecific kick distance into the
corresponding parameter vectrThe pipeline for the kick task, whose contexhis
kick distance s with a straight kick direction witbspect to the torso, is shown in
Figure 9.

Fig 8. The initial (left) and final (right) positions afh exemplary kick movement.

In order to learn the policy function (s) we useoatextual policy search algorithm
called CREPS-CMA.

Distance s Parameters 6 Joint Commands
Policy Function Kick Controller

Fig 9. The pipeline of our contextual kick movement.

We use CREPS-CMA to train the 3D simulated NAO tatpp optimising the kick
controller. The desired kick distans&aries from 2:5m to 12:5m. For the non-linear

policy, we choose K = 15 normalized RBFs artds set to 0.5. Both K and the#
parameters were chosen by trial and error to maiitiie results accuracy.



We achieved an average error of 0.34+thlfking the non-linear policy. Figure 10
shows the learned non-linear policies for gendralizthe 25 parameter kick
controller for different kick distances.

. Kick Parameters Values
2 @ o 2 @ 9
8 8 o &8 8 & 8
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Fig 10. The learned non-linear policy for kick distance®2@ to 12.5 meters. The
y-axis represents the controller parameter valoesafgiven desired kick distance,
and the x-axis represents the desired kick distance

5. High-Level Decisions and Coordination

Flexible Tactics has always been one of the magsets of FC Portugal teams. FC
Portugal 3D is capable of using several differemiations and for each formation
players may be instantiated with different playgpes. The management of
formations and player types is based on SBSP -atfituBased Strategic Positioning
algorithm [1, 4]. Player’s abandon their stratggisitioning when they enter a critical
behavior: Ball Possession or Ball Recovery. Thigbées the team to move in a quite
smooth manner, keeping the field completely covered

The high-level decision uses the infrastructures@néed in the section 3. Several new
types of actions are currently being consideredntpkn consideration the new
opportunities opened by the 3D environment of tke rsimulator. We also have
adapted our previous researched methodologie® toetv 3D environment:

® Strategy for a Competition with a Team with Oppes$doals [1, 4, 5, 21];
® Concepts of Tactics, Formations and Player TypgeS$,[4, 21];

® Distinction between Active and Strategic Situatifhs4];

® Situation Based Strategic Positioning (SBSP) [B]4,

® Dynamic Positioning and Role Exchange (DPRE) [B]4,

® Visual Debugging and Analysis Tools [1, 3, 22];

® Optimization based Low-Level Skills [1, 3, 26, 27].

® Standard Language to Coach a (Robo)Soccer Team[2,3]

® Intelligent Communication using a Communicated W@tate [1, 3, 5];



® Flexible Set-plays for coordinating robosoccer te§23].

In previous years our research was mostly conceinedeveloping optimization

based low level skills for the humanoid agent amlolist mid-level skills. The high-

level layers of the team for this year will be a#apto be used in the humanoid
simulator (these methodologies have already beaptad to our Simulation 2D,

Simulation 3D with spheres model, small-size, medsize [24] and rescue teams
[25]).

6. Learning Framework

For developing a learning framework, it is way eetb run the simulation as fast as
the CPU can. By usin§yncmode, the simspark simulator only waits for the agent
commands and a synchronize message which sigmaenthof the agent cycle. After

it receives all the agents Sync message, the spreeesses all the commands and
proceeds to the next cycle. In addition to simolatspeed time improvement, it can
also be used to detect strange cycle times fromagemts. We have developed our
agent to use Sync Mode to improve speed of thenogition process.

The process of optimization is, the 3D soccer seaved a Matlab program. All of our
optimization algorithm such as CMA-ES, GA and et developed using Matlab
code because of the facility that Matlab prepaiasniathematical programming.
After connection, the optimization agent sendsrdepired optimization data to the
Matlab program, that, afterwards, uses the agerd asrver to compute the cost
function of the individuals. By its turn, the ageint order to compute the value of the
cost function, runs a simulation in the soccereerand returns the computed value to
the Matlab program. These interactions last urité pptimization process ends.
Figure 11 illustrate the interaction among theatéht applications.

Server Agent CMA-ES

Connect

Optimizations Parameters

Execute Behaviour

Simulation State
———— -->|

return Cost function value

Fig. 11 Optimization Flow

We have already implemented some optimization #dlgns such as Hill climbing
(HC), GA, PSO and CMA-ES. Still, there was somemadm improve optimization



process by improving optimization algorithm andngsimore recent policy search
techniques, such as POWER, P12, REPS, and CREPS-CMA

6. Conclusions

Robust low-level skills have been developed for M&O humanoid model, the
results of low-level skills have already tested amtidated on the real NAO robot,
since it is based on the physical modeling of theadhics of biped locomotion it is
very robust and with minimal adaptation was usedtiom NAO robot. Using
optimization and learning techniques, enabling ascontinue the research in
strategical reasoning and coordination methodototfiat should be the focus of the
simulation leagues inside RoboCup. Also the exterftgxibility of omnidirectional
kicks and walks will enable a more cooperative gatyke.

Future work will be concerned in extending the mation methodology for skills
sequences and on developing coordination methowalognabling teams of
humanoid robots to play robosoccer games in a to@nd flexible manner. This
includes new deep learning techniques for bothdaa high level behaviors.

Almost all of our research on high-level flexibl@acdination methodologies is

directly applicable to the 3D league and the ingeaa the number of elements of the
each team is very welcome, enabling coordinatiothauologies to be useful in this
league. FC Portugal started its participation en$fPL - Standard Platform League in
2011. The SPL code of the team was entirely madm fscratch based on the
Simulation 3D code. Thus, future work will be onidging the gap between

simulation and robotics by developing a more r&aliBlAO model in Simspark

enabling better portability of the simulated codéette real robot.
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