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Abstract. With the progress made in active exploration, the robots
of the Joint Rescue Forces are capable of making deliberative decisions
about the distribution of exploration locations over the team. Exper-
iments have been done which include information exchange between
team-members at rendez-vous points. Last year progress has been made
with robots with advanced mobility, such as the Kenaf and the Air-
Robot. Currently our navigation algorithms are extended to be able to
autonomously explore with the AirRobots. Robots equipped with both
camera and laser-range scanners can learn a visual classifier of free space,
which could be used by robots without laser-range scanners to navigate
through the environment. Part of our algorithms have been validated on
the Nomad Super Scout II robot available in our laboratory.

Introduction

The RoboCup Rescue competitions provide benchmarks for evaluating robot
platforms’ usability in disaster mitigation. Research groups should demonstrate
their ability to deploy a team of robots that explore a devastated area and lo-
cate victims. The Virtual Robots competition, part of the Rescue Simulation
League, is a platform to experiment with multi-robot algorithms for robot sys-
tems with advanced sensory and mobility capabilities. With our participation
in last year’s Interleague Challenge3 we demonstrated that our algorithms are
directly portable to fieldable systems[1].

The shared interest in the application of machine learning techniques to
multi-robot settings [2] has led to a joint effort between the laboratories of Oxford
and Amsterdam.
3 http://kaspar.informatik.uni-freiburg.de/~alex/interleague09/



1 Team Members

UsarCommander was originally developed by Bayu Slamet and all other con-
tributions have been built into his framework. Many other team members [3–6]
have contributed to perception and control algorithms inside this framework.

The following contributions have been made this year:

Arnoud Visser : coordination [7], collaboration [8], explo-
ration [9, 10], omnicam perception [11, 12],
traversability maps [13], mapping evaluation
[14–16], scan matching [17]

Quang Nguyen : navigation based on image interpretation [11]
Bas Terwijn : software performance analysis, UT3 develop-

ment
Moos Hueting, Robrecht Jurri-
aans and Martijn van der Veen

: navigation with AirRobot

Okke Formsma, Nick Dijk-
shoorn and Sander van Noort

: smoke and fire simulation [18]

Radoslaw Sobolewski : automated robot navigation in rough terrain
[19]

Helen Flynn : object recognition with weak classifiers [20]
Magda Jankowska : hough transform based map stitching [21]
Swaroop Rath : 3D mapping
Julian de Hoog : multi-robot exploration, communication roles

[9, 10]

2 Scan Matching

The possibilities for active exploration are heavily dependent on a correct estima-
tion of a map of the environment. Many advanced techniques that aim to detect
and correct error accumulation have been put forward by SLAM researchers.
Although these SLAM techniques have proven very effective in achieving their
objective, they are usually only effective once errors have already accumulated.
With a robust scan matching algorithm the localization error is minimal, and
the effort to detect and correct errors can be reduced to a minimum. Several
scan matching algorithms are available in our code, but during the competition
the WSM algorithm [22] will be used, which has been efficiently implemented
with Quadtrees [17].

3 Localization and Mapping

The mapping algorithm of the Joint Rescue Forces is based on the manifold
approach [23]. Globally, the manifold relies on a graph structure that grows
with the amount of explored area. Nodes are added to the graph to represent
local properties of newly explored areas. Links represent navigable paths from
one node to the next.



The graph structure means that it is possible to maintain multiple discon-
nected maps. In the context of SLAM for multiple robots, this makes it possible
to communicate the graphs and to have one disconnected map for each robot.
The graph structure of the manifold can be easily converted into occupancy grids
with standard rendering techniques.

4 OmniCam rangescanner

Camera images can be used for teleoperation and to detect victims. Camera
images can also be used as independent information to detect free space. Range
scanners, which are typically used as primary means to detect free space, are
active sensors which have a limited range and a limited field of view. Additionally,
active sensors are relatively heavy and consume considerable amounts of energy,
which makes them less attractive for small mobile robots. In contrast, the limit
of a visual sensor range can lie as far as the horizon and omnidirectional vision
methods can provide a 360◦ view of the environment. A method to identify free
space based on visual sensor data could well expand the environment observation
quality of a rescue robot.

Previous year, a visual free space classifier was trained using a laser-range
scanner as reference [24]. This year, the classifier is used for navigation purposes.
The images from an omnicam [12] are interpreted along polar-scanlines, to create
range-estimates to obstacles. Those range-estimates can be further interpreted
by scan-matching algorithms developed for laser-scanners, allowing simultaneous
localization and mapping.

Figure 1(a) and 1(b) shows the results of building a map of the factory
environment using an omnicam sensor and a laser sensor when ground truth is
available as localization. Because of the accuracy of the laser measurements (less
than a centimeter) the map 1(b) can serve as an indication for what the ground
truth map should look like. The omnicam map does not differ that much from
the laser created map. The black dots and lines on both maps represents detected
obstacles, the gray color represents the safe space while the white color represents
the free space detect by the rangefinder. Both gray and white indicates areas free
of obstacles, but grey indicates areas that are well explored, while white indicates
areas that could be further explored. The main difference is the thickness of the
walls. The omnicam map is not as razorsharp as the map generated with the laser
scanner. Yet, for navigation purposes this is not a disadvantage. A less obvious
difference between both maps is visible at the bottom of the map, indicated with
a red rectangle. The omnicam map has found a obstacle at that location while
on the laser map only four small dots are visible. The omnicam map is correct at
this situation, there is indeed a big obstacle present on this location; a cabinet.
The laser scanner looked right through the cabinet, because no shelf was present
at measurement height of the sensor.



(a) Omnicam sensor
factory map

(b) Laser sensor factory map

Fig. 1. Factory map created with two different range sensors

5 Map Stitching

A common problem in robotic mapping occurs when a robot loses its orientation,
for example after bumping into an obstacle. This can lead to multiple overlays
on the map of the same obstacle, e.g. one wall may be represented by three
different lines. The scan-matching method outlined above and developed in [25]
has proven to be quite robust to such errors. However, it relies on subsequent
scans being fairly close together. When a robot is traversing rough terrain it can
be difficult to match subsequent scans as the laser range scanner is constantly
tilting in different directions. To solve this problem we propose Hough-transform
based map stitching [21].

In Map Stitching, two maps of the same environment, having some degree of
overlap, are meant to be stitched together to form a single, unified map. Many al-
gorithms exist for this purpose, but we have chosen to examine Hough-transform
based map stitching [26]: this method is good at matching lines (common in
rescue environments due to walls), is robust to noise, can be used online, and
returns the translation and rotation between the two maps, which is useful for
localisation.

The idea is as follows: when moving in flat terrain, use scan-matching as in
previous years for precise mapping. Once bumpy, uneven terrain is encountered,
turn the mapping off. After this difficult terrain has been surpassed (or a flat
patch is reached), turn the scan matching back on to create a new map. If there
is enough data and sufficient overlap, hough-based map stitching can be used to
merge both maps and to relocalise the robot. An example is presented in Fig. 2.



(a) Only scan matching (b) Scan matching combined with map
stitching

Fig. 2. Two maps created in the same bumpy world. On the left, only scan matching
was used. On the right, scan matching was turned off during traversal of the bumpy
area, then turned on again afterwards, and map stitching was used to merge new data
to the map and relocalise (see Section 5).

6 Multi-Robot Exploration and Communication

In our previous work, an exploration approach was demonstrated which made
a selection between a small number of frontiers, based on the information gain
available beyond those frontiers [27]. Each robot may calculate the balance be-
tween movement costs and information gain for itself and for each of its team-
mates. Consequently an optimal robot-frontier assignment can be determined in
which robots assign themselves to frontiers, and no frontier is explored by more
than one robot. The result is efficient, fully autonomous multi-robot exploration.

Recently this approach has been extended into a “Role-based Exploration”,
which takes into account communication limitations [9]. In this exploration strat-
egy robots assume the role of either explorers or relays. Explorers explore the
farthest reaches of the environment, while relays periodically rendezvous with
explorers and return new information to the ComStation. The result is a com-
plete exploration of communication-limited environments in which information
is efficiently returned to a central command centre.

To evaluate this method, four different approaches were compared in a variety
of environments:

A. Frontier-based, no exploration beyond the team’s communication range lim-
its.

B. Frontier-based, exploration beyond the communication range limits, and
robots return when there are no more frontiers left to explore, i.e. when
the exploration effort is completed.

C. Frontier-based, exploration beyond the communication range limits and reg-
ular periodic return by each robot to the command centre.

D. Role-based exploration beyond communication range limits, based on
explorers and relays.



Depending on the performance measure, each of the approaches has its ben-
efits. However, the role-based approach presents a good trade-off when both full
exploration of the environment and regular updating of information at the com-
mand centre are required, as is the case for most rescue situations (see Figure
3).
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Fig. 3. Two performance measures comparing the exploration algorithms outlined in
Section 6. Frontier-based exploration (B) leads to quicker exploration, but role-based
exploration (D) allows for more frequent updating of information at the command
centre.

A more recent study [10] indicated that choosing optimal rendez-vous points
can improve the efficiency of the exploration with another 10%.

7 Autonomous navigation with AirRobot

To use the AirRobot for autonomous indoor exploration it is necessary to imple-
ment a motion which ensures that the AirRobot is capable of navigating hallways
without bumping into obstacles. To allow autonomous exploration we equipped
the AirRobot with 6 sonar-sensors with a range of approximately 5 meters4. The
sensors are set up with 4 sensors on the outer ring of the AirRobot to maximize
the visibility in front of the AirRobot5 and the other 2 sensors pointing up and
down to check the distance to the floor and ceiling.

Flying using only the six range measurements received from these sensors
is difficult since they do not allow a clear perception of the surroundings. The
method we have decided on when flying indoors is based upon finite state au-
tomata, each state describing a navigational situation which the AirRobot might
encounter. The combination of rules implemented in the automata give the Air-
Robot a tendency to position in front of hallways and then following the hallways
until new rooms are found. When in an open space the AirRobot flies straight
on until a new wall has been found which it will then follow. Communication
4 This additional load reduced the battery life of the AirRobot a bit
5 This excludes flying backwards.



with the user is achieved by drawing a map of the values returned by the sonars
of the AirRobot. Currently only the 4 horizontal sonars are used for this sonar
map (See Fig. 4). Including the down pointing sensor could lead to a height map.
This would be the next step in achieving a more accurate representation of the
environment.

Fig. 4. A screenshot of the team’s user interface, including a sonar map of a map
especially designed for aerial navigation in tight surroundings.

What this algorithm achieves is that the AirRobot is capable of filling its
battery life with exploration. The next step is to implement a function that
extend this wandering behavior to a more goal oriented behavior capable to
navigate between 2 points. This goal oriented behavior can in turn be used to
navigate to the nearest encountered gateway. When these steps have been taken
it is possible to deploy the AirRobot indoors for autonomous navigation using
nothing more than the 6 sonar sensors. Before more stable and complex behaviors
should be written, the current finite state automata implementation should be
rewritten to graph-like system. This would create a solid base for navigational
algorithms on the ground and in the air.

8 Rough Terrain Navigation

In spite of proposals for rough terrain mapping, such as map stitching (above),
rough terrain continues to be a significant problem for robotics in general. In
rescue robotics, a robot traversing slanting, bumpy, or obstacle filled terrain
is typically controlled by a human operator, and requires this operator’s full



concentration. Since there are so many other tasks requiring human attention
(looking for victims in camera feedback, noting environmental features of inter-
est, monitoring the rescue effort as a whole), it would be useful to offload the
rough terrain navigation to the robot, i.e. to make it autonomous.

We have experimented with a variety of control techniques for autonomous
rough terrain navigation [19]. To gather training data, we ran a Kenaf robot over
various types of obstacles in USARSim, with slightly random behaviour, several
tens of thousands of runs. Subsequently this data was used to train a variety
of machine learning techniques to develop automated control mechanisms, in-
cluding artificial neural networks, neuro-fuzzy systems, and evolutionary neural
networks. Over a variety of tests, it turned out that the evolutionary neural net-
work approach performed best (including outperforming humans on the same
task).

As input to our neural network we used the Kenaf robot’s pitch, yaw and roll,
along with three measurements from a vertically mounted Hokuyo range sensor
(to detect the height/drop of obstacle ahead). These values were fed through
a hidden layer, and the outputs returned movement up/down for each of the
Kenaf robot’s four flippers (see Figure 5). We hope to integrate this automated
motion control into our control software in terms of waypoint navigation.

(a) Range sensor values
used as input (front three)

(b) The neural network

Fig. 5. Automated rough terrain motion control for the Kenaf robot using an evolu-
tionary neural network (see Section 8).



9 Object Recognition

The primary goal of rescue robotics is to recognise and find victims in the dis-
aster area. A secondary goal is to map the environment, including landmarks of
interest, so that human responders may find their way more easily if necessary.
Since a rescue robot operator has a large number of tasks to concentrate on, it
is desirable to offload as much as possible onto the robot. There has been great
progress in recent years in Computer Vision, including the automated detection
of particular types of objects in image data. Therefore, it should be possible to
give rescue robots the capability to detect victims and landmarks autonomously,
alerting the human operator as required.

To examine such autonomous recognition, we have implemented an existing
object recognition approach that uses a cascade of weak classifiers trained by
adaptive boosting to find known objects in a given image [20, 28]. Using several
thousand annotated images taken from USARSim, containing victims, plants,
chairs and various other objects, we used a cluster at Oxford University’s Su-
percomputing Centre to train our classifiers over several weeks. Initial results
led to several false positives (e.g. car wheels were recognised as faces), but by
using false positives as negative training examples in later stages of the training,
we were able to significantly improve performance: faces and plants now have a
detection rate of more than 80%. Also, in several cases our classifier was able
to detect victims at greater distance than USARSim’s existing VictimSensor.
Several examples are shown in Figure 6.

The classifier is still a work in progress, but we hope to integrate it into
our existing control software for victim detection. If it performs well, we envi-
sion creation of a new open-source VictimSensor for USARSim that uses image
recognition instead of the current template based human form detection mech-
anism [29].

(a) (b) (c)

Fig. 6. Some examples of automated object detection (faces and plants) using a cascade
of boosted classifiers. In the last figure the wheel is a false positive.



10 Infrastructure developments

The competition is only possible when the simulation infrastructure is available.
The creation and validation of this infrastructure should be a shared effort of
all teams. This year the following contributions have and will been made by our
team:

Battery : Limits the time/power that a robot may use before
becoming inactive (Bas Terwijn, 7 points).

ComServer interface : Provides the interface for the external Wireless
Simulation Server tool (Bas Terwijn, 7 points).

Fire and Smoke : Environmental model, including the scripts for the
sensor response on these effects (Okke Formsma,
Nick Dijkshoorn, Sander van Noort, 10 points).

Kenaf : Robot model, including skeletal mesh and behav-
ior scripts (Julian de Hoog, 10 points).

More details about the contributions can be found in our Infrastructure Con-
tribution Plan [30].

11 Conclusion

This paper summarizes improvements in the robot control environment of the
Amsterdam Oxford Joint Rescue Team since RoboCup 2009 in Graz. At this
competition the third price was won. At the same competition the second place
was reached for the Teleoperation Test and the Interleague Challenge. At the
RoboCup Iran Open 2010 the USARsim development prize was won.
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