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Abstract. This paper describes the software system supporting the
Carnegie Mellon/Univ. of Pittsburgh team of simulated search and res-
cue robots in the Robocup Rescue 2010 Virtual Robots competition.
Building on the Machinetta agent software, robot command and con-
trol is decomposed into a hierarchy of subtasks managed by independent
agents both on the robot and colocated with human operators. By en-
capsulating all robot and human operator interactions into interfaces to
these agents, the system can perform with a high level of robustness and
reusability.

1 Introduction

In human-robot interaction, how and when the operator intervenes in the robotic
system are the two predominant issues [Endsley, 1996]. How a human works with
the system is a function of the level of autonomy (LOA), which describes the
static function assignments between the human and the robot. The LOA can
range from full manual control to full autonomy, with intermediate levels of
LOA generally being superior to full autonomy or full manual control. This is
because an LOA that is too high leads to degradation in manual or mental skill,
loss of situation awareness, decision bias, and decrease in vigilance. The low
LOA of full manual control leads to high mental demand, human decision bias,
complacency, boredom, and inconsistent control behavior, all of which degrade
performance. In systems with adaptive autonomy (AA), the allocation of control
between the human and the robot can be dynamically changed and is usually
triggered by a critical event, performance measurement, operator’s workload,
or the operator model. Carefully calibrated AA maximizes the amount of time
the human operator can spend doing tasks which humans perform better than
robots, such as victim identification and navigation of robots out of stuck or dan-
gerous positions, problems present with the current state-of-the-art for robots.
If utilized effectively, it is clearly the case that adding robots to a search and
rescue team will increase the speed and rate at which useful imagery for the
operator is acquired by the robots. However, as the number of robots increases,
a single operator synchronously monitoring the incoming video feeds for victims



becomes infeasible. Asynchronously reviewing the video feeds retains sources of
wasted operator time, such as viewing video feeds of robots that are stuck, are
passing through a previously explored areas or have poor visibility. In this sys-
tem, we introduce the idea of a priority queue of images which addresses these
problems and additionally eliminates the context switching penalties associated
with localizing victims from a video feed. Thus, the focus of the 2010 Steel team
is user-centered autonomy and context-free victim identification. First we will
look at the capabilities of our software packages.

2 Machinetta

The teamwork algorithms used in MrCS are general algorithms that have been
shown to be effective in a range of domains [Tambe, 1997]. To take advantage of
this generality, the emerging standard approach is to encapsulate the algorithms
in a reusable software proxy. Each team member has a proxy that he works with
closely, and the proxies work together to implement the teamwork. The current
version of the proxies utilized in MrCS is Machinetta [Scerri et al., 2005b], which
is implemented in Java and is freely available on the internet. This type of proxy
differs from many other multi-agent toolkits in that it provides the coordination
algorithms, e.g., algorithms for allocating tasks, as opposed to the infrastructure,
e.g., APIs for reliable communication.

The Machinetta software consists of five main modules, three of which are
domain-independent and two of which are tailored for specific domains. The three
domain-independent modules are designed for coordination reasoning, maintain-
ing local beliefs (state), and adjustable autonomy. The domain-specific modules
are designed for communication between proxies and communication between a
proxy and a team member. These modules interact with each other only via the
local state with a blackboard design and are designed to be “plug and play”.
This means, for examples, that new adjustable autonomy algorithms can be used
with existing coordination algorithms.

The coordination reasoning is responsible for reasoning about interactions
with other proxies, thus implementing the coordination algorithms. The ad-
justable autonomy algorithms reason about the interaction with the team mem-
ber, providing the possibility for the team member rather than the proxy to
make any coordination decision. For example, the adjustable autonomy module
can reason that a decision to accept the role of rescuer for a civilian in a burning
building should be made by the human who will enter the building rather than
the proxy. In practice, the overwhelming majority of coordination decisions are
made by the proxies, and only key decisions are referred to the human opera-
tors. Teams of proxies implement team-oriented plans (TOPs) which describe
joint activities to be performed in terms of the individual roles to be performed
and any constraints on those roles. Typically, TOPs are instantiated dynami-
cally from TOP templates at run-time when pre-conditions associated with the
templates are filled. Constraints between these roles specify interactions, such
as the required execution ordering and whether one role can be performed if



another is not currently being performed. It is important to note that TOPs
do not specify the coordination or communication required to execute a plan.
Instead, the proxy determines the coordination that should be performed.

Machinetta includes algorithms for plan instantiation, role allocation, in-
formation sharing, task deconfliction, and adjustable autonomy. Many of these
algorithms utilize a logical associates network that statically connects all team
members. The associates network is a scale free network which allows the team
to balance the complexity of needing to know about all the team and maintain-
ing cohesion. The associates network’s key algorithms, including role allocation,
resource allocation, information sharing, and plan instantiation, are based on
the use of tokens that are “pushed” onto the network and routed to where
they are required by the proxies. For example, the role allocation algorithm LA-
DCOP [Scerri et al., 2005a] represents each role to be allocated with a token
and pushes the tokens onto the network until a sufficiently capable and available
team member is found to execute the role. The implementation of the coordina-
tion algorithms uses the abstraction of a simple mobile agent to implement the
tokens, leading to robust and efficient software.

3 MrCS

The system architecture of MrCS is shown in Figure 1. Each robot connects
with Machinetta through a robot driver that controls the robot on both low and
middle levels of control. For low-level control, it serves as a broker that trans-
lates robot sensory data into local beliefs and that translates the exploration
plan into robot control commands (e.g., wheel speed control). For middle-level
control, the driver analyzes robot sensory data to perceive its states and local
environment. Then, based on this perception, the driver overrides the control
commands when it is necessary to ensure safe movement. Possible adjustments
include changing the direction of motion to avoid obstacles and recovering from
becoming immobilized and from a dangerous pose. The operator connects with
Machinetta through the user interface agent. This agent collects the robot team’s
beliefs and visually represents them on the interface. It also transfers the opera-
tor’s commands in the form of a Machinetta proxy’s beliefs and passes them to
the proxies network to allow human intervention in the loop cooperation. The
operator can intervene with the robot team on three levels. On the lowest level,
the operator takes over an individual robot’s autonomy to teleoperate it. On
the middle level, the operator interacts with a robot via editing its exploration
plan. For example, the operator is allowed to delete a robot’s plan to force it to
stop and regenerate a plan or issue a new plan (a series of waypoints) to change
its exploration behavior. On the highest level, the operator intervenes with the
entire robot team by altering values of the occupancy grid in areas which are
thought to contain victims, altering the regions that the robots will explore.

In this human-robot team, the human maintains the highest authority to
adjust the robot team’s behavior. For example, the human can change a plan
during plan execution, and this plan can be further adjusted by the robot to



Fig. 1: MrCS architecture.

avoid obstacles or a dangerous pose. When critical events occur, such as detect-
ing being in a dangerous pose, the robot adjusts its own behavior and informs
the operator. In this case, the robot initiates the interaction and the operator
can either accept the robot’s adjustment or change the robot’s plan. One of the
challenges in a mixed-initiative system is that the user may fail to maintain sit-
uation awareness of the robot team and of the individual robots when control
switching and may therefore make faulty decisions. Moreover, as the team size
increases, the interventions from the robots may overwhelm the operator’s cogni-
tive resources [McFarlane and Latorella, 2002] and the operator may be limited
to reacting to the robots instead of proactively controlling the robots or identi-
fying victims [Trouvain, 2003]. We address these issues in the robot autonomy
and user interface design described below.

4 Concept

The overall Steel team system can be divided into two parts. The first part is the
autonomous robot behaviors that provide the infrastructure which the operator
will utilize. The second part is the interface through which the operator monitors
and interacts with the team. Below we describe these two elements.



5 Autonomy

Previous Steel teams have utilized some minimal levels of autonomy, but in 2010
three new components will make the Steel robots capable of significant amounts
of autonomous activity. The three components are: (1) vision-coverage based
autonomous search; (2) Simultaneous Localization And Mapping; and (3) robot
self-reflection. Below we give a short overview of the planned capabilities of each
of these components.

5.1 Vision-based coverage

Finding victims eventually relies on the operator looking at an image with the
victim visible. Thus, a search should attempt to provide images of the whole
environment as quickly as possible. However, most autonomous search and au-
tonomous SLAM algorithms focus on obtaining laser scans of the whole envi-
ronmentin order to build maps. While the laser scan results are critical input to
computing a map of the environment, their coverage is not what should be op-
timized for the operator. Vision-coverage generates the same map as traditional
laser-coverage based SLAM, but builds the occupancy grid for exploration pur-
poses based on what the robot believes is the quality of imagery that has been
collected for each location. This involves estimating the area of the map viewable
by the camera based on the robot pose and laser scanner data with adjustments
to compensate for the camera’s narrow field of view and limited resolution.

We will build the capability into the autonomous search for an operator to
direct one robot or a group of robots to go directly to some location and continue
the search from there. While the search will remain overwhelmingly autonomous,
this ability to provide some high-level input is expected to make the search
significantly more efficient, especially in cases where the operator accurately
recognizes the type of environment and can utilize background knowledge to
guide the search.

5.2 Simultaneous Localization And Mapping (SLAM)

For our 2D representation of the environment, we generate maps from laser-
based scan matching. During the last decades a rich set of solutions for building
maps from 2D laser range data has been proposed, such as [Lu and Milios,
1997; Gutmann, 2000; Hähnel, 2005]. In contrast to scan matching methods,
more sophisticated methods, such as FastSlam [Montemerlo et al., 2002], and
GMapping [Grisetti et al., 2005], were introduced that correct the entire map at
once when loop-closures, revisitations of locations, are detected.

Although existing methods are capable of dealing with sensor noise, they do
require reasonable pose estimates such as wheel odometry as an initial guess
for the mapping system. Wheel odometry tends to become unreliable given an
unpredictable amount of wheel slip, which is frequently the case on the rough



terrain encountered in USAR missions. Furthermore, methods performing loop-
closures are mostly not applicable in real-time since their computational needs
can unpredictably increase in unknown environments.

The mapping approach utilized for our robot team focuses on the applica-
tion scenario of realistic teleoperation. Under certain constraints, such as low
visibility and rough terrain, first responder teleoperation leads to very noisy and
unusual data. For example, due to environmental make-up and failures in control,
laser scans are frequently taken under a varying roll and pitch angle, making it
difficult to reliably find correspondences from successive measurements. In con-
trast to artificially generated data logs, logs from teleoperation seldom contain
loops. Most existing methods follow the principle of minimizing the squared sum
of error distances between successive scans by searching over scan transforma-
tions, such as rotations and translations. Scan point correspondences are decided
only once before the search starts based on the Euclidean distance. In contrast
to other methods, our scan matching approach re-considers data associations
during the search, which remarkably increases the robustness of scan matching
on rough terrain. The algorithm processes data from the laser range finder and
gyroscope only, making it independent from odometry failures, which are likely
occur in such domains due to slipping wheels. The mapping approach has been
extensively tested on robot platforms designed for teleoperation in critical situ-
ations, such as bomb disposal. Furthermore, the system was evaluated in a test
maze by first responders during the Disaster City event in Texas in 2008. Ex-
periments conducted within different environments show that the system yields
comparably accurate maps in real-time when compared to more sophisticated,
offline methods, such as Rao-Blackwellized SLAM. More details on the utilized
mapping approach are found in [Kleiner and Dornhege, 2009].

5.3 Self-reflection

In environments that are not simple and open, it is inevitable that robots will
get stuck in positions from which they require human help to escape. If the
team of robots is large, the operator can spend a large amount of their time
simply checking whether the robots need any help. This distracts them from
more important and useful tasks and can dramatically limit the number of robots
a single operator can manage. We intend to reduce the time spent monitoring
robots for problems by giving robots an ability to self-reflect and determine
whether they are in a position that requires human help. We have a simple
version of self-reflection implemented that looks at the pose of the robot, whether
it is progressing along its planned path and whether it has been forced to re-plan
many times in order to decide whether human input is required. As operator
attention is a precious commodity, we want to ensure that robot requests for
assistance will pay off in the near future. When there are many robots searching
an environment, not all of them will be in equally useful positions. For example,
midway through the search, some of the robots may have completely searched
the part of the environment that they are in and would have a long path to
travel to get to a new frontier. If there are multiple robots needing operator



assistance, there may be different values to the overall objective for assisting
each of the robots. We have been developing heuristics for assessing the relative
importance of each robot to the team’s medium term performance. If a robot
decides it is stuck but has very low importance and the operator has a large
workload, it will not request help but will instead try to fix itself for a period
of time before evaluating its status and importance and the operator’s workload
again. We hope that this ability of self-reflection will eventually free the operator
from all the time they currently spend monitoring the robots for problems and
fixing trivial problems.

6 User interface

The 2010 Steel user interface will build on the Multi-robot Control System
(MrCS) interface that has been used in several competitions and been the ba-
sis for large human-factors experiments. Revisions to the interface have focused
on the three primary tasks of the operator: (1) viewing imagery; (2) assisting
robots; and (3) localizing victims. This year, the interface will consist of the
following components: a 2D navigation map, a dashboard of synchronous video
feed thumbnails of the entire robot team, a color coded robot status panel, a
teleoperation panel and a filmstrip viewever with a list of filmstrips below it.
The 2D navigation map creates a visualization of our occupancy grid and dis-
plays the location each of the robots. The map can be translated and scaled
by the operator. Selecting an idividual robot on the navigation map allows the
operator to edit the robot’s waypoints or teleoperate the robot. Additionally,
the map can be annotated by the user to mark victims, hazards or other useful
information. The synchronous video feed thumbnails are present so the operator
can get an initial impression of the mission environment. The color coded robot
status panel serves to give the operator a quick overview of the overall team
status with a single glance. In the panel each robot is represented by a small
square which is colored to indicate the robot’s status or task, such as exploring,
performing victim localization, network anchoring, attempting a self-fix, waiting
for assistance, idle or dead. The teleoperation panel provides a video feed of
the robot being controlled and a simple mouse interface to drive the robot. The
filmstrips are each a queue of images selected from the entire history of images
taken by the robot team during their current mission. Associated with each im-
age is the robot pose and laser scan taken by the robot at the time of capture.
Visually, a filmstrip consists of textbox with its name and small thumbnails of
the images in the queue to provide a sense of length. The filmstrip viewer dis-
plays the currently selected image in the active filmstrip in one window and the
minimap, a smaller copy of the navigation map, in a second window. The robot
pose and laser scan associated with the displayed image are superimposed on
the minimap and the minimap is centered on the robot pose. The core of the
user interface depends on these filmstrips, which select images based on which
of the three operator tasks it is associated with.



6.1 Viewing imagery

As the number of robots in the team is increased, the task of monitoring robot
video feeds becomes more time-consuming and difficult as some portion of the
imagery shown to the operator will be a part of the environment already seen.
We can identify three sources of redundant imagery: (1) robots that are stuck;
(2) robots that are passing through previously explored areas; and (3) robots
with poor visibility. To address this issue we create a single priority filmstrip, a
priority queue of images sorted by uniqueness, explained below, that is updated
at predefined intervals. The operator selects the priority filmstrip to load it in
the filmstrip viewer and clicks through it using different buttons to advance the
image depending on whether or not a victim was seen in the current image.

The priority filmstrip is created in the following process; when a robot cap-
tures a video frame, it is added to a database along with the robot’s current
pose, laser scanner data and uniqueness score. The uniqueness score is obtained
by subtracting the occupancy grid from the camera view estimate obtained from
the laser scan data and calculating the remaining area, which is the map cover-
age unique to that image. When the priority filmstrip requests an update, the
image with the highest score is added to the update priority queue and its cam-
era view is permanently subtracted from the occupancy grid. Priority scores are
then recalculated as the occupancy grid has changed, and the resulting highest
scoring image is added to the updated priority queue. This process is repeated a
predefined number of times and then the update priority queue is added to the
end of the priority queue. With this approach, the first two sources of redundant
imagery are eliminated simply by our camera centric occupancy grid. The third
source, poor visibility, cannot be realized until further imagery has been taken.
For example, as a robot begins to move into the doorway of a previously unex-
plored room, it captures many unique images. However, once the robot reaches
the doorway, it will capture the imagery of the doorway plus imagery of the in-
terior of the room and the images taken while approaching the doorway can be
identified as being less unique, or having poor visibility. Updating our priority
filmstrip at predefined intervals resolves this problem.

6.2 Robot assistance

When a robot self-reflects and determines it needs assistance and the operator
is not overburdened, an assistance filmstrip is created, filled with time-ordered
images taken by the robot and added to the list of filmstrips. By selecting this
assistance filmstrip, teleoperation control of the robot is enabled. If the source
of the problem is not immediately apparent, the operator can look backwards
through the filmstrip images and make necessary annotations to the minimap
to help prevent similar problems in the future. Once unstuck, the operator can
manually assign robot waypoints around the tricky area using the navigation
map. However, if the operator decides fixing the robot is not a priority and
presses the ”Ignore” button, the assistance filmstrip will be deleted and the
robot will attempt to autocorrect itself for a period of time. If the operator



instead determines the robot is permanently stuck, the operator can update its
status to ”Dead” and no further assistance filmstrips will be generated for the
robot.

Robot assistance can also be provided through the navigation map to sup-
plement our mapping algorithms. While the mapping algorithms are capable of
being completely autonomous, they can be inefficient because they do not take
advantage of environment features that are easily understood by an operator,
especially if that operator has access to imagery from the robots. For example,
if robots start at the end of a long corridor with offices all the way down, it
will take a significant amount of time for a SLAM algorithm to work this out
and the search may be quite inefficient. However, an operator viewing the image
will immediately recognize the type of environment and may be able to design
a much more efficient search strategy, for example, sending some robots to the
end of the corridor to explore beyond the corridor, while a small number are left
to check the offices. In the case of a cluttered environment, a robot will spend
a great deal of time navigating around thin chairs and tables in order to fully
map the wall behind the objects using its laser scanner. An operator can look
at image in the filmstrip viewer and the sparsely populated navigation map or
minimap discern if there are victims present. If a victim is present, the operator
reacts normally, outlined in the next section; if not, the operator can annotate
the map by drawing a box around the sparsely, yet sufficiently, outlined walls of
the room and mark the entire room as being clear, allowing the robot team to
move on and explore other areas.

6.3 Localizing victims

When an operator viewing the priority filmstrip sees a victim in the current
frame and presses the associated ”Victim” button, a localization filmstrip is
created, filled with imagery taken nearby using the robot pose information in the
imagery databse and added to the list of filmstrips. Addidtionally, that section
of the occupancy grid is updated to appear as a desireable area so a robot will
return to the area and collect more imagery.

When a sufficient number of filmstrip thumbnails appears, the operator will
select this localization filmstrip and can quickly click forward and backward
through the images to find one with an unobstructed view of the victim. If no
such image is found, the operator can press a button to request additional im-
agery, which is achieved again by modifying the occupancy grid. While additional
imagery is being acquired, the operator can activate a different filmstrip. Once
a suitable image is found, it is used for visual victim status assesment and the
minimap is used to mark the victim on the occupancy grid.

7 Conclusion

The MrCS system addresses the complex problem of urban search and rescue
with a hierarchy of simple, robust solutions. Rather than solely depending on



autonomy algorithms or operator skills, tasks are decomposed into cooperative
efforts between robots and operators, allowing for speed and efficiency while
minimizing the frequency and criticality of failures. For Robocup Rescue 2010 we
have chosen to strengthen core robot features such as SLAM and path planning
while adding new features to further maximize the use of the human operator’s
attention for tasks such as identifying victims and assisting stuck robots. Our
updates to autonomy and user interface combine together to optimize use of the
operator’s attention.
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